A Strategy To Reduce Fleet Collisions

When businesses require a fleet of vehicles to move their products from one location to another, it’s critical that they are focusing on promoting safety while on the road. When they are not doing this, sometimes drivers can accidentally drive in dangerous ways. Putting everyone on the road around them at risk. With technology improving to boost safety and reduce fleet collisions, managers and business operators must use it to their advantage.

 

Where The Concern Comes From 

 

Any vehicle accident is concerning. However, when a commercial motor vehicle is involved, sometimes the outcome of the incident can be much worse. As the size of the vehicles and the cargo carried are factors into making the collision worse for all parties involved, it sheds light on why commercial trucking is considered to be in the top 10 most deadliest jobs. In fact, in 2017, FMCSA reported that there were approximately 450,000 police-reported crashes involving large trucks. 

 

With the most common fatal accidents being transportation incidents, managers and drivers themselves can’t be forgoing certain precautions to reduce the risk of collisions and accidents. Below we list various ways fleet employees at every level can do their part to reduce fleet collisions. These tips must remain top of mind as by 2030, it is predicted that road crashes will be the fifth leading cause of death in the U.S. 

 

Commitment From Management 

 

Firstly, in order to reduce fleet collisions, there must be a specific level of commitment from management in regards to maintaining safety. This means that management must continually put the right enforcement in place. This can vary from strict policy to the adoption of new technological solutions, and everything in-between – all of which we touch upon later in this article.  

 

How Managers Can Reduce Fleet Collisions In Their Fleet

 

Enforcing Strict Policy

 

Strict policy enforcement by management is critical to lowering the risk of collisions in fleets. As fleet drivers represent a business, they must act responsibly and abide by company policy at all times. This includes when commercial vehicle drivers are behind the wheel of a company vehicle as they travel to a new work site or when they are delivering cargo. Such policies should look to reduce any risky behaviour like; distracted driving, driving under the influence (regardless of if the substance is legal), driving tired, or even driving over the set hours-of-service (HOS) in your country. 

 

While some of these policies could be hard to enforce and rely largely on trusting your drivers, it’s important to know that there are technological solutions available to help you! When monitoring the behaviour of your drivers, there are innovative dash camera solutions available that use facial recognition to watch facial movements as well as the vehicle movement on the road. So when a driver appears to be distracted, under the influence (swaying over the line), or even tired, managers can be notified to make contact with the driver to ensure they are okay to drive. As well, many ELD and GPS tracking tools like the GO9 device are designed to track not only driver movement, but compliance to HOS. So drivers are well aware whether they are compliant.

 

Pre-Trip Inspection And Proper Maintenance 

 

In addition to enforcing strict policies, managers must also reiterate the importance of keeping company vehicles in tip-top condition. This includes not only educating drivers on how to perform proper pre-trip inspections of vehicles, but scheduling maintenance so all commercial motor vehicle parts are in good condition, are working properly, and are safe to use. Doing this can lower the risk of a collision (that is caused by malfunctioning or broken parts). Such inspections should look at visually checking the engine, checking fluid levels, the wheels, the brakes, and more. A more extensive list about what should be checked can be found here

 

 

If a vehicle is placed on the road when there is a pending problem that requires repairs, it places the driver and others around the vehicle at risk. One way to combat the issue of poor maintenance is to use a maintenance management software solution. Solutions like Zendu Maintenance monitors not only the activity of the vehicle but it places the data in algorithms to determine and schedule when preventative maintenance should happen.

 

 

Proper Incident Investigations And Training 

 

As briefly mentioned, to reduce fleet collisions, managers must not only offer the right training, but complete proper investigations into driving incidents when they are reported. This includes using all of the available data and reports to determine what the cause of the incident was and put efforts in place to reduce the likelihood of a similar incident happening again.

 

For example, if an incident occurred because your driver was distracted and speeding while on the road, you can review dashcam footage as well as engine data to confirm the speed they were travelling at, as well how they were distracted (whether they were looking at scenery or even a mobile device). After this is confirmed, the information can allow for a new training module to be created and assigned to the driver to complete. This ensures that they are aware of how their behaviour puts themselves and others around them at risk, while showing how they can act more safely. 

 

Encouraging Safe Driving Habits

 

Similar to the above tip of management conducting proper investigations into driving incidents and implementing new driver-focused training, management must also encourage overall safe driving habits! This means constantly having drivers review training material surrounding this topic, sending out internal communication with tips or even conducting one-on-one driver driving to highlight poor driving trends that are happening. 

 

Some safe driving habits that can reduce fleet collisions are: 

  • Following distance while driving
  • Maintaining visibility 
  • Anticipating turns 
  • Keeping attention forward

 

 

Tech Adoption Via Telematics

 

The last way management can reduce fleet collisions is to adopt and embrace new technologies. This not only speaks to hardware solutions that have been designed to boost safety (such as dash camera solutions or electronic logging devices) but telematics software solutions as well! While some newer commercial motor vehicles are being fitted with such innovative tools while at the factory through OEM (original equipment manufacturer) programs, it can still happen for fleets with older vehicles. There are now a number of simple-to-install plug-and-play style devices that can have software solutions integrated via satellite connectivity. Such hardware and software can automatically collect data about the trip route and driver behaviour so management can always know how their drivers are performing. So when an incident happens and management is alerted by the telematics solution, they can quickly and efficiently address it. Not to mention, there are innovative devices that can be installed within vehicles to monitor the road ahead, alerting the driver if the sensors detect a possible collision coming. 

 

Safety should always be a top priority in fleets regardless of their size or purpose. Whether the driver is transporting large amounts of cargo or the driver is a technician who is travelling to their next site visit, you can’t risk them behaving dangerously on the road. With the above tips management should have the right insight to begin to reduce fleet collisions. However, if you’re looking for a little more guidance in how you can increase safety in your fleet to reduce accidents and dangerous behaviour, contact us today! With our experience and knowledge of nearly every industry, we’re confident that we can address all of your safety concerns with cutting edge technology. 

Advanced Driver Assistance Systems: The Secret To Boosting Fleet Safety

Within fleets, technology continues to advance and as a result, drive new benefits. These safety benefits don’t only keep drivers and others safe on the road, but can in fact lower excess costs related to accidents or other driving incidents. At the moment, Advanced Driver Assistance Systems (ADAS) are extremely useful and are only growing in popularity as the technology continues to impress fleets of many sizes. Below we discuss how ADAS systems can lead to improved driver safety, less driving incidents, reduced road collisions, and less dangerous accidents. 

 

What Are Advanced Driver Assistance Systems? Who Is Using This Technology?

 

As briefly mentioned, ADAS, or otherwise known as Advanced Driver Assistance Systems, are innovative technological systems that help drivers not only keep better control of their vehicles, but drive more safely. As mentioned previously ADAS systems are growing in popularity due to safety benefits. However, it is also worth highlighting how many of the advancements of the technology has resulted from research and development into self-driving cars. This is because much of the advancements look towards automating driving systems and reducing the need of human intervention. 

 

Since benefits relate to improving efficiencies and safety, many fleets are implementing ADAS systems in their drivers vehicles. In fact, a recent 2018 survey found that approximately 40% of all fleets (regardless of size) are using some form of ADAS technology, with 74% of larger fleet sizes consisting of 50 or more Class 8 vehicles adopting the technology. 

 

Types Of Advanced Driver Assistance Systems Used By Fleets

 

When discussing ADAS systems and fleet use, it’s important to look at the varying ways that fleets of any size can implement the technology. But before diving into the most popular systems, it’s important to note that advanced driver assistance systems can vary from being adaptive, automated, monitoring and warning systems. 

 

Adaptive Systems 

 

An adaptive ADAS system is one that adapts to its surroundings. Meaning that as a vehicle moves throughout an environment, the systems will help provide small adjustments to improve safety. Typically using previously gathered data in relation to its current environmental surroundings. One example of this is the cruise control features in automobiles. Adaptive cruise control (ACC) focuses on using distance sensing technology to detect the space between items or vehicles on the road. In terms of driving, ACC systems focus on using radar or laser sensor technology to not only anticipate the distance of vehicles in front of the automobile it is installed in, but automatically make adjustments in speed to ensure that the proper distance is maintained while driving. 

 

Automated Systems 

 

An automated system is a little more innovative than an adaptive system because it allows for the system to gain control over the vehicle and make adjustments to ensure that safety is met. The system typically takes control of the vehicle when a collision is about to occur. An example of an automated system in vehicles is the automatic emergency braking (AEB) feature. AEB automatically and immediately begins to brake when the vehicle detects that a collision or accident may happen in attempts to avoid it. 

 

Warning Systems 

 

A warning system is exactly what one may assume it to be – a system which alerts drivers of possible risks to safety. This automatic feature consists of in-cab warnings which alert the driver of possible issues in real-time. An example of this is forward collision warning (FCW) which uses real-time data of speed and objects on the road to calculate whether a collision could happen. If the system measures that the distance or angle of an object (including vehicles) ahead could be worrisome at the travelling speed, it will warn the driver of the impending collision. 

 

 

ADAS Technologies Used By Fleets

 

Blind Spot Monitoring 

 

This is an innovative feature that has proven itself to be extremely useful not only in the safety it provides, but its average adoption rate of 77.2%. Blind spot monitoring focuses on using not only cameras, but sensors to monitor the space surrounding a vehicle. The technology monitors for objects that are located in the drivers obstructed view (or otherwise known as the drivers blind spot). When objects are detected in the blind spot, the sensor-based monitor can alert the driver that there is something in the not-easily visible area. Many sensor-based blind spot monitors are now built into vehicles at the factory stage of manufacturing via OEM (original equipment manufacturer) initiatives. OEM blind spot monitoring typically consists of exterior cameras at the side or rear of the vehicle. 

 

Forward Video Monitoring 

 

Forward video monitoring is another beneficial feature to implement within fleets of any size as it provides front-facing footage of drivers on the road. Typically, a dash camera is installed in-cab, on windshields to automatically record what is happening ahead of the vehicle. The device then records footage automatically, and typically only stores footage for a short period of time unless an incident is reported. Video monitoring is extremely useful to help provide proof of driving events, lower risky driving behaviour, coach drivers in real-time on errors of judgement, and even relieve drivers from not-at-fault accidents or crash-for-cash scams. Forward video monitoring has not been completely adopted as it is fairly new with an adoption rate of only 52% (many myths surrounding the telematics device could be to blame). 

 

Lane Departure Warning 

 

Lane departure warning (LDW) focuses on notifying drivers on whether it is safe to make lane movements. LDW utilizes video, laser and sometimes infrared sensors to monitor the lane markings on the road. When the vehicle begins to move out the lane without signaling, it automatically alerts the driver of their (sometimes unknown) movement with audio or visual alerts. This feature is impressive because it not only has an average adoption rate of 51.2% in fleets, but has been expanded to include lane keeping assist (LKA) – the technology that helps to ensure that drivers are staying in their lane by taking control of the vehicle if need be. 

 

 

Air Disc Brakes 

 

Another advanced driver assistance system that is used by fleets are air disc brakes. These brakes are designed to help reduce stopping distance by almost 40% which is extremely attractive for heavy and large trucks (as these types of vehicles often require more time to manually brake). Air disc brakes function by applying braking pressure continuously to allow for the vehicle to come to a complete stop more easily. This technology has an approximate 46.3% adoption rate in fleets. 

 

Collision Avoidance 

 

A wide-ranging category of ADAS technology that has an adoption rate of approximately 44.7% is collision avoidance. While there are numerous collision avoidance technologies, forward collision warning (FCW) and automatic emergency braking (AEB) are the most popular. As previously mentioned, both of these avoidance technologies work to decrease the likelihood of driving incidents involving collisions.

 

Adaptive Cruise Control 

 

As previously mentioned, adaptive cruise control or ACC, is a technology which utilizes radar and laser sensor innovation to judge, measure and anticipate the distance between the vehicle being driven, as well as surrounding vehicles. ACC focuses on adjusting the travelling speed according to how close or how far forward the system detects a vehicle to be. This ADAS technology has an adoption rate of 39.8%. 

 

Electronic Stability Control 

 

The ADAS technology with the lowest adoption rate that we will mention is electronic stability control (ESC). ESC utilizes sensors to monitor steering control and proactively watch whether the ability to steer will be lost. If steering is lost (sometimes in extreme maneuvers like sudden or sharp turns to avoid collision), ESC will apply individual brakes automatically. Applying the brakes individually to wheels can help course-correct the vehicles movement and in theory prevent the act of ‘spinning out’. 

 

Advanced Driver Assistance Systems

 

While there are numerous solutions available to help fleets, it’s important to highlight a tool that embodies a number of these features in one solution. This tool is the Samsara AI Dash Camera system which utilizes ADAS technology. Now, in addition to the standard Samsara dashcam features that fleets love, the camera solution will also offer the following: 

  • Forward collision warning
  • Unsafe following distance detection
  • Distraction driving detection

 

AI Dashcams With ADAS Technology Benefits

  • Receive multiple ADAS technologies and features in ONE easy-to-install device so you can see real-time results 
  • Lower the frequency of accidents while increasing the training opportunities 
  • Decrease the severity of driving incidents
  • Lower the costs related to accidents, driving incidents, and repairs 

 

 

Interested in learning more about Samsara dash camera solutions and their new innovative features? Contact us today!